skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Orgerie, Anne-Cecile"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While distributed computing infrastructures can provide infrastructure-level techniques for managing energy consumption, application-level energy consumption models have also been developed to support energy-efficient scheduling and resource provisioning algorithms. In this work, we analyze the accuracy of a widely-used application-level model that have been developed and used in the context of scientific workflow executions. To this end, we profile two production scientific workflows on a distributed platform instrumented with power meters. We then conduct an analysis of power and energy consumption measurements. This analysis shows that power consumption is not linearly related to CPU utilization and that I/O operations significantly impact power, and thus energy, consumption. We then propose a power consumption model that accounts for I/O operations, including the impact of waiting for these operations to complete, and for concurrent task executions on multi-socket, multi-core compute nodes. We implement our proposed model as part of a simulator that allows us to draw direct comparisons between real-world and modeled power and energy consumption. We find that our model has high accuracy when compared to real-world executions. Furthermore, our model improves accuracy by about two orders of magnitude when compared to the traditional models used in the energy-efficient workflow scheduling literature. 
    more » « less
  2. The emergence of Internet of Things (IoT) is participating to the increase of data-and energy-hungry applications. As connected devices do not yet offer enough capabilities for sustaining these applications, users perform computation offloading to the cloud. To avoid network bottlenecks and reduce the costs associated to data movement, edge cloud solutions have started being deployed, thus improving the Quality of Service. In this paper, we advocate for leveraging on-site renewable energy production in the different edge cloud nodes to green IoT systems while offering improved QoS compared to core cloud solutions. We propose an analytic model to decide whether to offload computation from the objects to the edge or to the core Cloud, depending on the renewable energy availability and the desired application QoS. This model is validated on our application use-case that deals with video stream analysis from vehicle cameras. 
    more » « less